博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
GIS简单计算Helper类
阅读量:5099 次
发布时间:2019-06-13

本文共 9602 字,大约阅读时间需要 32 分钟。

using System;using ESRI.ArcGIS.Client.Geometry;namespace GISProject.Extensions{    ///     /// Extension methods for geodesic calculations.    ///     public static class Geodesic    {        private const double EarthRadius = 6378.137; //kilometers. Change to miles to return all values in miles instead        ///         /// Gets the distance between two points in Kilometers.        ///         /// The start point.        /// The end point.        /// 
public static double GetSphericalDistance(this MapPoint start, MapPoint end) { double lon1 = start.X / 180 * Math.PI; double lon2 = end.X / 180 * Math.PI; double lat1 = start.Y / 180 * Math.PI; double lat2 = end.Y / 180 * Math.PI; return 2 * Math.Asin(Math.Sqrt(Math.Pow((Math.Sin((lat1 - lat2) / 2)), 2) + Math.Cos(lat1) * Math.Cos(lat2) * Math.Pow(Math.Sin((lon1 - lon2) / 2), 2))) * EarthRadius; } /// /// Returns a polygon with a constant distance from the center point measured on the sphere. /// /// The center. /// Radius in kilometers. ///
public static Polygon GetRadiusAsPolygon(this MapPoint center, double distKM) { Polyline line = GetRadius(center, distKM); Polygon poly = new Polygon(); if (line.Paths.Count > 1) { PointCollection ring = line.Paths[0]; MapPoint last = ring[ring.Count - 1]; for (int i = 1; i < line.Paths.Count; i++) { PointCollection pnts = line.Paths[i]; ring.Add(new MapPoint(180 * Math.Sign(last.X), 90 * Math.Sign(center.Y))); last = pnts[0]; ring.Add(new MapPoint(180 * Math.Sign(last.X), 90 * Math.Sign(center.Y))); foreach (MapPoint p in pnts) ring.Add(p); last = pnts[pnts.Count - 1]; } poly.Rings.Add(ring); //pnts.Add(first); } else { poly.Rings.Add(line.Paths[0]); } if (distKM > EarthRadius * Math.PI / 2 && line.Paths.Count != 2) { PointCollection pnts = new PointCollection(); pnts.Add(new MapPoint(-180, -90)); pnts.Add(new MapPoint(180, -90)); pnts.Add(new MapPoint(180, 90)); pnts.Add(new MapPoint(-180, 90)); pnts.Add(new MapPoint(-180, -90)); poly.Rings.Add(pnts); //Exterior } return poly; } /// /// Returns a polyline with a constant distance from the center point measured on the sphere. /// /// The center. /// Radius in kilometers. //
public static Polyline GetRadius(this MapPoint center, double distKM) { Polyline line = new Polyline(); PointCollection pnts = new PointCollection(); line.Paths.Add(pnts); for (int i = 0; i < 360; i++) { //double angle = i / 180.0 * Math.PI; MapPoint p = GetPointFromHeading(center, distKM, i); if (pnts.Count > 0) { MapPoint lastPoint = pnts[pnts.Count - 1]; int sign = Math.Sign(p.X); if (Math.Abs(p.X - lastPoint.X) > 180) { //We crossed the date line double lat = LatitudeAtLongitude(lastPoint, p, sign * -180); pnts.Add(new MapPoint(sign * -180, lat)); pnts = new PointCollection(); line.Paths.Add(pnts); pnts.Add(new MapPoint(sign * 180, lat)); } } pnts.Add(p); } pnts.Add(line.Paths[0][0]); return line; } /// /// Gets the shortest path line between two points. THe line will be following the great /// circle described by the two points. /// /// The start point. /// The end point. ///
public static Polyline GetGeodesicLine(this MapPoint start, MapPoint end) { Polyline line = new Polyline(); if (Math.Abs(end.X - start.X) <= 180) // Doesn't cross dateline { PointCollection pnts = GetGeodesicPoints(start, end); line.Paths.Add(pnts); } else { double lon1 = start.X / 180 * Math.PI; double lon2 = end.X / 180 * Math.PI; double lat1 = start.Y / 180 * Math.PI; double lat2 = end.Y / 180 * Math.PI; double latA = LatitudeAtLongitude(lat1, lon1, lat2, lon2, Math.PI) / Math.PI * 180; //double latB = LatitudeAtLongitude(lat1, lon1, lat2, lon2, -180) / Math.PI * 180; line.Paths.Add(GetGeodesicPoints(start, new MapPoint(start.X < 0 ? -180 : 180, latA))); line.Paths.Add(GetGeodesicPoints(new MapPoint(start.X < 0 ? 180 : -180, latA), end)); } return line; } private static PointCollection GetGeodesicPoints(MapPoint start, MapPoint end) { double lon1 = start.X / 180 * Math.PI; double lon2 = end.X / 180 * Math.PI; double lat1 = start.Y / 180 * Math.PI; double lat2 = end.Y / 180 * Math.PI; double dX = end.X - start.X; int points = (int)Math.Floor(Math.Abs(dX)); dX = lon2 - lon1; PointCollection pnts = new PointCollection(); pnts.Add(start); for (int i = 1; i < points; i++) { double lon = lon1 + dX / points * i; double lat = LatitudeAtLongitude(lat1, lon1, lat2, lon2, lon); pnts.Add(new MapPoint(lon / Math.PI * 180, lat / Math.PI * 180)); } pnts.Add(end); return pnts; } /// /// Gets the latitude at a specific longitude for a great circle defined by p1 and p2. /// /// The p1. /// The p2. /// The longitude in degrees. ///
private static double LatitudeAtLongitude(MapPoint p1, MapPoint p2, double lon) { double lon1 = p1.X / 180 * Math.PI; double lon2 = p2.X / 180 * Math.PI; double lat1 = p1.Y / 180 * Math.PI; double lat2 = p2.Y / 180 * Math.PI; lon = lon / 180 * Math.PI; return LatitudeAtLongitude(lat1, lon1, lat2, lon2, lon) / Math.PI * 180; } /// /// Gets the latitude at a specific longitude for a great circle defined by lat1,lon1 and lat2,lon2. /// /// The start latitude in radians. /// The start longitude in radians. /// The end latitude in radians. /// The end longitude in radians. /// The longitude in radians for where the latitude is. ///
private static double LatitudeAtLongitude(double lat1, double lon1, double lat2, double lon2, double lon) { return Math.Atan((Math.Sin(lat1) * Math.Cos(lat2) * Math.Sin(lon - lon2) - Math.Sin(lat2) * Math.Cos(lat1) * Math.Sin(lon - lon1)) / (Math.Cos(lat1) * Math.Cos(lat2) * Math.Sin(lon1 - lon2))); } /// /// Gets the true bearing at a distance from the start point towards the new point. /// /// The start point. /// The point to get the bearing towards. /// The distance in kilometers travelled between start and end. ///
public static double GetTrueBearing(MapPoint start, MapPoint end, double distanceKM) { double d = distanceKM / EarthRadius; //Angular distance in radians double lon1 = start.X / 180 * Math.PI; double lat1 = start.Y / 180 * Math.PI; double lon2 = end.X / 180 * Math.PI; double lat2 = end.Y / 180 * Math.PI; double tc1; if (Math.Sin(lon2 - lon1) < 0) tc1 = Math.Acos((Math.Sin(lat2) - Math.Sin(lat1) * Math.Cos(d)) / (Math.Sin(d) * Math.Cos(lat1))); else tc1 = 2 * Math.PI - Math.Acos((Math.Sin(lat2) - Math.Sin(lat1) * Math.Cos(d)) / (Math.Sin(d) * Math.Cos(lat1))); return tc1 / Math.PI * 180; } /// /// Gets the point based on a start point, a heading and a distance. /// /// The start. /// The distance KM. /// The heading. ///
public static MapPoint GetPointFromHeading(MapPoint start, double distanceKM, double heading) { double brng = heading / 180 * Math.PI; double lon1 = start.X / 180 * Math.PI; double lat1 = start.Y / 180 * Math.PI; double dR = distanceKM / 6378.137; //Angular distance in radians double lat2 = Math.Asin(Math.Sin(lat1) * Math.Cos(dR) + Math.Cos(lat1) * Math.Sin(dR) * Math.Cos(brng)); double lon2 = lon1 + Math.Atan2(Math.Sin(brng) * Math.Sin(dR) * Math.Cos(lat1), Math.Cos(dR) - Math.Sin(lat1) * Math.Sin(lat2)); double lon = lon2 / Math.PI * 180; double lat = lat2 / Math.PI * 180; while (lon < -180) lon += 360; while (lat < -90) lat += 180; while (lon > 180) lon -= 360; while (lat > 90) lat -= 180; return new MapPoint(lon, lat); } }}

  

转载于:https://www.cnblogs.com/sunyj/p/5473724.html

你可能感兴趣的文章
jQuery.support
查看>>
java实现的加密解密
查看>>
网页瀑布流效果实现的几种方式
查看>>
LINUX与UNIX区别在哪
查看>>
python 快速排序代码
查看>>
Python装饰器学习(九步入门)
查看>>
通信原理1
查看>>
前端基础之BOM和DOM和三个小示例(计时器、搜索框、select联动)
查看>>
错误和异常处理(7)
查看>>
TP5.0 调用bootstrap分页类显示分页
查看>>
【LeetCode】167. Two Sum II - Input array is sorted
查看>>
如何在g++中添加include文件的目录
查看>>
BlockingQueue深入解析
查看>>
网络编程
查看>>
POJ -2236 Wireless Network
查看>>
CentOS6.9安装Filebeat监控Nginx的访问日志发送到Kafka
查看>>
java把html标签字符转换成普通字符(反转换成html标签)
查看>>
CentOS 编译源码安装MySQL-5.6.16
查看>>
Mac之NSImageView的简单实用
查看>>
pulltorefresh
查看>>